2,526 research outputs found

    Quantum interference in the fluorescence of a molecular system

    Get PDF
    It has been observed experimentally [H.R. Xia, C.Y. Ye, and S.Y. Zhu, Phys. Rev. Lett. {\bf 77}, 1032 (1996)] that quantum interference between two molecular transitions can lead to a suppression or enhancement of spontaneous emission. This is manifested in the fluorescent intensity as a function of the detuning of the driving field from the two-photon resonance condition. Here we present a theory which explains the observed variation of the number of peaks with the mutual polarization of the molecular transition dipole moments. Using master equation techniques we calculate analytically as well as numerically the steady-state fluorescence, and find that the number of peaks depends on the excitation process. If the molecule is driven to the upper levels by a two-photon process, the fluorescent intensity consists of two peaks regardless of the mutual polarization of the transition dipole moments. If the excitation process is composed of both a two-step one-photon process and a one-step, two-photon process, then there are two peaks on transitions with parallel dipole moments and three peaks on transitions with antiparallel dipole moments. This latter case is in excellent agreement with the experiment.Comment: 11 pages, including 8 figure

    Interference-induced gain in Autler-Townes doublet of a V-type atom in a cavity

    Full text link
    We study the Autler-Townes spectrum of a V-type atom coupled to a single-mode, frequency-tunable cavity field at finite termperature, with a pre-selected polarization in the bad cavity limit, and show that, when the mean number of thermal photons N1N\gg 1 and the excited sublevel splitting is very large (the same order as the cavity linewidth), the probe gain may occur at either sideband of the doublet, depending on the cavity frequency, due to the cavity-induced interference.Comment: Minor changes are mad

    Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transition with control fields

    Get PDF
    We show that atoms from wide velocity interval can be concurrently involved in Doppler-free two-photon resonant far from frequency degenerate four-wave mixing with the aid of auxiliary electromagnetic field. This gives rise to substantial enhancement of the output radiation generated in optically thick medium. Numerical illustrations addressed to typical experimental conditions are given.Comment: LaTeX2e, hyperref, 7 pages, 5 figures, to appear in PRA 1 august 200

    Series study of the One-dimensional S-T Spin-Orbital Model

    Full text link
    We use perturbative series expansions about a staggered dimerized ground state to compute the ground state energy, triplet excitation spectra and spectral weight for a one-dimensional model in which each site has an S=\case 1/2 spin Si{\bf S}_i and a pseudospin Ti{\bf T}_i, representing a doubly degenerate orbital. An explicit dimerization is introduced to allow study of the confinement of spinon excitations. The elementary triplet represents a bound state of two spinons, and is stable over much of the Brillouine zone. A special line is found in the gapped spin-liquid phase, on which the triplet excitation is dispersionless. The formation of triplet bound states is also investigated.Comment: 9 pages, 9 figure

    f(R)f(R) gravity constrained by PPN parameters and stochastic background of gravitational waves

    Full text link
    We analyze seven different viable f(R)f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. The aim is to achieve experimental bounds for the theory at local and cosmological scales in order to select models capable of addressing the accelerating cosmological expansion without cosmological constant but evading the weak field constraints. Beside large scale structure and galactic dynamics, these bounds can be considered complimentary in order to select self-consistent theories of gravity working at the infrared limit. It is demonstrated that seven viable f(R)f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.Comment: 23 pages, 8 figure

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200

    Study of BDπB\to D^{**} \pi decays

    Full text link
    We investigate the production of the novel PP-wave mesons D0D^{*}_{0} and D1(D1)D^{\prime}_{1} (D_{1}), identified as JP=0+J^{P}=0^+ and 1+1^+, in heavy BB meson decays, respectively. With the heavy quark limit, we give our modelling wave functions for the scalar meson D0D^{*}_{0}. Based on the assumptions of color transparency and factorization theorem, we estimate the branching ratios of BD0πB\to D^{*}_{0} \pi decays in terms of the obtained wave functions. Some remarks on D1()D^{(\prime)}_{1} productions are also presented.Comment: 16 pages, 2 figures, Revtex4, to be published in Phys. Rev.

    Electroweak Radiative Corrections to Associated WH and ZH Production at Hadron Colliders

    Full text link
    Higgs-boson production in association with W or Z bosons, p pbar -> WH/ZH + X, is the most promising discovery channel for a light Standard Model Higgs particle at the Fermilab Tevatron. We present the calculation of the electroweak O(alpha) corrections to these processes. The corrections decrease the theoretical prediction by up to 5-10%, depending in detail on the Higgs-boson mass and the input-parameter scheme. We update the cross-section prediction for associated WH and ZH production at the Tevatron and at the LHC, including the next-to-leading order electroweak and QCD corrections, and study the theoretical uncertainties induced by factorization and renormalization scale dependences and by the parton distribution functions.Comment: 32 pages, LaTeX, 21 figures. Uses axodraw.sty and feynarts.sty. Added reference

    Alterations to nuclear architecture and genome behavior in senescent cells.

    Get PDF
    The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres

    K^+ production in the reaction 58Ni+58Ni^{58}Ni+^{58}Ni at incident energies from 1 to 2 AGeV

    Full text link
    Semi-inclusive triple differential multiplicity distributions of positively charged kaons have been measured over a wide range in rapidity and transverse mass for central collisions of 58^{58}Ni with 58^{58}Ni nuclei. The transverse mass (mtm_t) spectra have been studied as a function of rapidity at a beam energy 1.93 AGeV. The mtm_t distributions of K^+ mesons are well described by a single Boltzmann-type function. The spectral slopes are similar to that of the protons indicating that rescattering plays a significant role in the propagation of the kaon. Multiplicity densities have been obtained as a function of rapidity by extrapolating the Boltzmann-type fits to the measured distributions over the remaining phase space. The total K^+ meson yield has been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented in comparison to existing data. The low total yield indicates that the K^+ meson can not be explained within a hadro-chemical equilibrium scenario, therefore indicating that the yield does remain sensitive to effects related to its production processes such as the equation of state of nuclear matter and/or modifications to the K^+ dispersion relation.Comment: 24 pages Latex (elsart) 7 PS figures to be submitted to Nucl. Phys
    corecore